
Lecture 6 

THE GEOMETRIC CHARACTERIZTIONS OF THE PLANE 

CROSS SECTIONS (continues) 
Plan 

1. The parallel - axis theorem for moment of inertia of а finite area.  

2. Principal moments of inertia. 

3. Solved problem. 

 

 

      6.1. The parallel - axis theorem for moment of inertia of а finite 

area. 

This quantity has the dimension of а length to the fourth power, 

perhaps in
4
 or m

4
. 

 

 

For а plane area composed of n  subareas iA , each of whose 

moment of inertia is known about the x  ­ and y  - axes, the integral is 

replaced by а summation: 

 

 

 

 

 

 

Fig. 6.1 
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The units of moment of inertia are the fourth power of а length, in
4
 

or m
4
. 

The parallel - axis theorem for moment of inertia of а finite area 

states that the moment of inertia of an area about any axis is equal to 

the moment of inertia about а parallel axis through the centroid of the 

area plus the product of the area and the square of the perpendicular 

distance between the two axes. For the area shown in Fig. 6.1, the axes 

x  and y  pass through the centroid of the plane area. The 1x  - and 1y  - 

axes are parallel axes located at distances a  and b  from the centroidal 

axes.  

Let A denote the area of the figure, xI  and yI  the moments of 

inertia about the axes through the centroid, and 
1x

I  and 
1y

I  the 

moments of inertia about the 1x  - and 1y  - axes. Then we have: 
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Derive the parallel - axis theorem for moments of inertia of а 

plane area. 

Let us consider the plane area A shown in Fig. 6.1. The axes x  

and y  pass through its centroid, whose location is presumed to be 

known. The axes x  and y  are loca1ed at known distances a  and b , 

respectively, from the axes through the centroid. 

For the clement of area do the moment of inertia about the 1x  - 

axis is given by: 
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For the entire area A the moment of inertia about the 1x  - axis 

is: 
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The second integral on the right is equal to:  

 

AadAa
A

22  , 

because a  is а constant. The third integral on the right is equal to: 
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because the axis from which y  is measured passes through the 

centroid of the area. The first in1egral on the right is equal to xI  i.e., 

the moment of inertia of the area аbоut the horizontal axis through 

the centroid. Thus 
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А similar considcra1ion in the other direction would show that: 
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This is the parallel - axis theorem for plane areas. It is to be 

noted that one of the axes involved in each equa1ion must pass 

through the centroid of the area. In words, this may be stated as 

follows: the moment of inertia of an area with reference to an axis 

not through the centroid of the area is equal to the moment of inertia 

about а parallel axis through the centroid of the area plus the 

product of the same area and the square of the distance between the 

two axes. 

The moment of inertia always has а positive value with а 

minimum value for axes through the centroid of the area in 

question. 

If the moment of inertia of an area A about the 1x  - axis is denoted 

by 
1x

I . Then the radius of gyration xi  is defined by: 
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Similarly, the radius of gyration with respect to the y  - axis is 

given by: 

A

I
i

y
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Since I  is in units of length to the fourth power, and A  is in units 

of length to the second power, then the radius of gyration has the units 

of length, say in or m. It is frequently useful for comparative purposes 

but has no physical significance. 

The product of inertia of an element of area with respect to the x  - 

and y  - axes in the plane of the area is given by: 

 

xydAdIxy  , 

 

where x  and y  are coordinates of the elemental area as shown in 

Fig. 6.1. 

The product of inertia of а finite area with respect to the x  - and y  

- axes in the plane of the area is given by the summation of the 

products of inertia about those same axes of all elements of area 

contained within the finite area. Thus: 
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From this, it is evident that xyI  may be positive, negative, or zero. 

For а plane area composed of n  subareas A, each of whose product of 

inertia is known with respect to specified x  - and y  - axes, the integral 

is replaced by the summation: 
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The parallel - axis theorem for product of inertia of а finite area 

states that the product of inertia of an area with respect to the x  - and 

y  - axes is equal to the product of inertia about а set of parallel axes 

passing through the centroid of the area plus the product of the area 

and the two perpendicular distances from the centroid to the 1x  - and 

1y  - axes. For the area, shown in Fig. 6.1, the axes x  and y  pass 

through the centroid of the plane area. The x  - and y  - axes are 



parallel axes located at distances 1x  and 1y  from the centroidal axes. 

Let A represent the area of the figure and xyI  bе the product of inertia 

about the axes through the centroid. Then we have: 
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Let us derive the parallel - axis theorem for product of inertia of а 

plane area. 

In Fig. 6.1 the axes x  and y  pass through the centroid of the 

area A. The axes 1x  and 1y  are located the known distances a  and b , 

respectively, from the axes through the centroid. 

For the element of area do the product of inertia with respect to the 

1x  - and 1y  - axes is given bу: 
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For the entire area the product of inertia with respect to the 1x  - 

and 1y  - axes becomes: 
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The first integral on the right side equals abA since a , and b  are 

constants. The second and third integrals vanish because x  and y  are 

measured from the axes through the centroid of the area A. The fourth 

integral is equal to xyI , that is, the product of inertia of the area with 

respect to axes through its centroid and parallel to the 1x  - and 1y  - 

axes. Thus, we have: 

abAII xyyx 
11

. 

 

This is the parallel - axis theorem for product of inertia of а plane 

area. It is to be noted that the x  - and y ·- axes must pass through the 

centroid of the area. Also, 1x  - and 1y  arc positive only when the 1x  - 

and 1y  - coordinates have the location relative to the xy  system 

indicated in Fig. 6.1. Thus, care must be taken with regard to the 

algebraic signs of x  and y . 



On beginning 

6.2. Principal moments of inertia. 

Let us consider а plane area A and assume that xI , yI  and xyI  are 

known. Determine the moments of inertia uI  and vI  as well as the 

product of inertia uvI  for the set of orthogonal axes u , v  oriented as 

shown in Fig. 6.2. Determine also the maximum and minimum values 

of uI .  

 

 

The moment of inertia of the area with respect to the u  - axis is: 
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Fig. 6.2 

 

 

 

 

 

 



 

Analogously, vI  may be obtained from (6.9) by replacing   by 

2


   to yield: 
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The value of   that renders uI , maximum or minimum is found 

by setting the derivative of Eq. (6.9) with respect to   equal to zero. 

Thus, since uI , vI  and uvI  are constants we have from (6.9): 
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Solving, 
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If now the values of 2  given by (6.11) are substituted into (6.8), 

we obtain: 

22 4)(
2

1

2
min

max
xyyx

yx
u III

II
I 


 ,       (6.12) 

 

where the positive sign refers to Case I and the negative sign to Case 

II. These maximum and minimum values of moment of inertia 

correspond to axes defined by (6.11). The maximum and minimum 

values of moment of inertia are termed principal moments of inertia 

and the corresponding axes arc termed principal axes. 

We may now determine uvI  from: 
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From (6.13), uvI  vanishes if 
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which is identical to condition (6.11). Since (6.11) defined principal 

axes, it follows that the product of inertia vanishes for principal axes. 

At any point in the plane of an area there exist two perpendicular 

axes about which the moments of inertia of the area are maximum and 

minimum for that point. These maximum and minimum values of 

moment of inertia are termed principal moments of inertia and are 

given by: 
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The pair of perpendicular axes through а selected point about 

which the moments of inertia of а plane area are maximum and 

minimum are termed principal axes. 

The product of inertia vanishes if the axes are principal axes. Also, 

from the integral defining product of inertia of а finite area, it is 

evident that if either the x  - axis, or the y  - axis, or both, are axes of 

symmetry, the product of inertia vanishes. Thus, axes of symmetry are 

principal axes. 

On beginning 

 

5.3. Solved problem 

Find basic geometrical characterizations for plane transversal section, 

represented on Fig. 6.3. 

1. For finding of the centroid of the section and its geometrical 

characterizations will divide a section into three simple figures (Fig. 6.4): 

rectangle 21KKDK  and two triangles BKK2  and DCK1 . These triangles 

are conveniently considered together. 



 

 

2. Areas of constituents of the section are levels: 
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Then a general area a section is equal: 

6,04,01,02 A  m
2
. 

 

The section has a axis of symmetry x , and that is why determine the 

co-ordinate of centroid of cx  only ( 0cy ). 

As 0
1
cx , 
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2. At the calculation of moments of inertia will take into account that 

for triangles moments of inertia about the axes of x  and y  are determined 

by formulas: 

36

3bh
I x  ,  

36

3hb
I y  , 

 

and the centrifugal moment of inertia is accordingly equal: 

 

72

22hb
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Then moments of inertia about central axes of section determined by 

formulas: 
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Fig. 6.4 
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As this section has an axis of symmetry Cx , the centrifugal 

moment of inertia about it is equal to the zero. And it means 

that axes Cx  and Cy  are principal central axes of given section. 

Accordingly, moments of inertia 
CxI  and 

CyI  are principal 

central moments of inertia for given transversal section 

On beginning 


